

Design and development of an educative platform based on the PocketQube60 Specification

3rd PocketQube Workshop

4th – 6th September 2019

Glasgow, Scotland

Israel Alejandro Arriaga-Trejo

CONACYT – Autonomous University of Zacatecas

CONACYT Research Fellow

E-mail: iaarriagatr@conacyt.mx

Agenda

- Objectives
- Research group at University of Zacatecas
- PocketQube modules
- Workshops
- Lessons Learned

Objectives

- Develop an educative platform to promote STEM education in the state of Zacatecas, Mexico.
- The platform should satisfy the PocketQube 60 specification.
- The modules integrating the platform should be designed at home using COTS components.
- Look forward for gender equality among the participants.

Zacatecas

- Located in the centernorth part of Mexico.
- World Heritage Site by UNESCO in 1993.
- Population of 1.5 million settlers (2015).
- Research center devoted to Telecomunications.

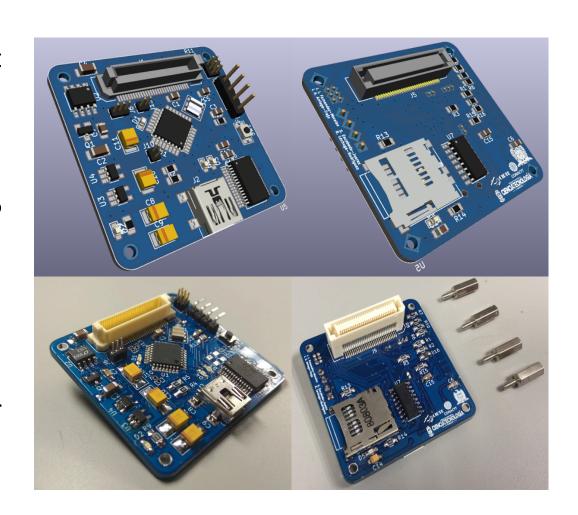
Funding

- Project supported and funded by COZCYT.
- Grant of \$6,000 USD.
- Should be completed in 6 months.
- The compromises: workshops free of charges to high school students in the state of Zacatecas.

Electric Power Supply

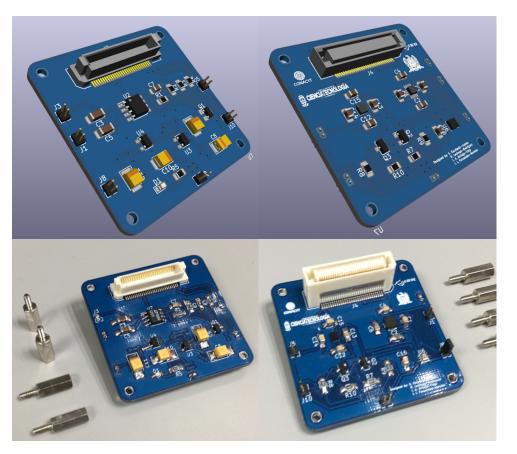
• The system is energized with a 3.3V Lithium battery.

 No solar cells are considered for the time being.



Onboard Computer (OBC)

- Based on the 8-bit ATMega328P MCU.
- 3.3V and 5V regulated lines.
- Programmable via ICSP and USB port.
- SD card.
- I²C, SPI communication with subsystems.
- LTC1153 circuit breaker for voltage protection.



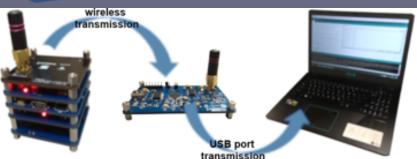
Sensors

- BMP280 Bosch Digital Pressure Sensor
- LSM303DLHC STM 3D accelerometer and 3D magnetometer.
- L3GD20H STM three axis gyroscope.
- I²C communication with OBC.
- 3.3V and 5V regulated lines.



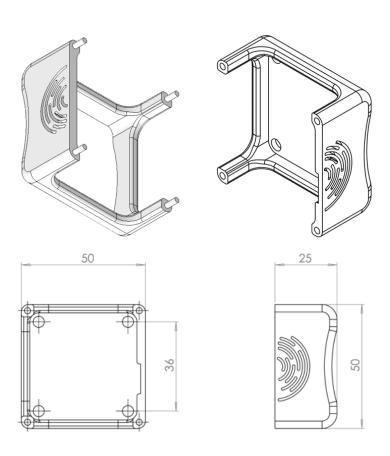
Radio

- Based on the nRF24L01
 2.4GHz Transceiver.
- **SPI** communication with OBC.
- 5V regulated line.
- Limited transmission range to avoid interference within the band.



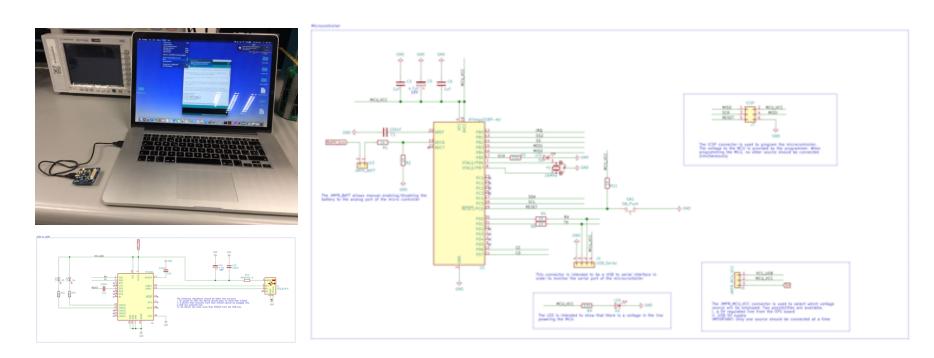
Receiving node

- Receiving node based on the ATmega328P and nRF24L01.
- Communications with personal computer via a USB port.
- Any serial monitor can be used to read received data (e. g. Arduino IDE).



Structure

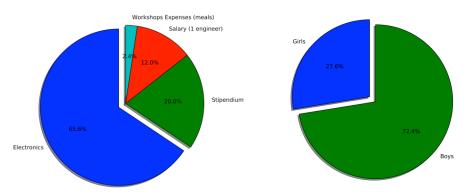
• 3D printed structure



Programming

• The platform is connected to a personal computer through a **USB port**.

Programming mode is selected with jumpers.



Workshops

- Preparatoria II UAZ, Zacatecas.
- Colegio de Bachilleres Plantel 1, Zacatecas.
- Preparatoria Francisco García Salinas, Jerez.
- Centro de Estudios Tecnológicos industrial y de servicios 114, Jerez.
- Preparatoria IV UAZ, Zacatecas.
- Elementary school Greem, Francisco I. Madero.

Workshops

• Participants were organized in groups of 4 - 5 members.

Workshops

Elementary School Workshops

Workshops for kinder-garden and elementary school learners.
 More than 100 participants attended.

Lessons learned

- Beneficial for undergraduate students to acquire "knowhow" skills in the design of the subsystems of a small satellite.
- PQ 60 platform can be employed as an effective tool for STEM education in countries under development.
- Costs reduction compared to other platforms.
- Consider the possibility to initialize a start-up company, looking forward for a space mission.

Acknowledgements

Dr. Agustín Enciso-Muñoz Mr. Ariel Santana-Gil

Dr. Jorge Flores-Troncoso Mrs. Mitzi Sánchez

Dr. Manuel Reta-Hernández Dr. Jorge de la Torre y Ramos Mrs. Leticia Ríos

Mrs. Rocío Ortíz-Muro

Team

Roxana Lechuga-Rodríguez EPS design, PCB layout, soldering, workshops. Electrical Engineering

Athziri Herrera-Saucedo Structure design. Industrial Design Engineering

Sergio Escobedo-Juárez Sensors design, PCB layout, soldering, workshops. Electrical Engineering

Iván Fernández-Morales OBC, radio, PCB layout, soldering, workshops. Electrical Engineering

Team

Jaime Coronado-Aranda
GUI for data processing
Mechatronics Engineering

Luis Bañuelos-DelgadoWorkshops
Electrical Engineering

Israel A. Arriaga-TrejoCoordinator